You are browsing the archive for Crystal River.

Seventy Years of Nuclear Fission: Short on Confidence; Long on Waste

5:55 am in Uncategorized by Gregg Levine

From here to eternity: a small plaque on the campus of the University of Chicago commemorates the site of Fermi's first atomic pile--and the start of the world's nuclear waste problem. (Photo: Nathan Guy via Flickr)

On December 2, 1942, a small group of physicists under the direction of Enrico Fermi gathered on an old squash court beneath Alonzo Stagg Stadium on the Campus of the University of Chicago to make and witness history. Uranium pellets and graphite blocks had been stacked around cadmium-coated rods as part of an experiment crucial to the Manhattan Project–the program tasked with building an atom bomb for the allied forces in WWII. The experiment was successful, and for 28 minutes, the scientists and dignitaries present observed the world’s first manmade, self-sustaining nuclear fission reaction. They called it an atomic pile–Chicago Pile 1 (CP-1), to be exact–but what Fermi and his team had actually done was build the world’s first nuclear reactor.

The Manhattan Project’s goal was a bomb, but soon after the end of the war, scientists, politicians, the military and private industry looked for ways to harness the power of the atom for civilian use, or, perhaps more to the point, for commercial profit. Fifteen years to the day after CP-1 achieved criticality, President Dwight Eisenhower threw a ceremonial switch to start the reactor at Shippingport, PA, which was billed as the first full-scale nuclear power plant built expressly for civilian electrical generation.

Shippingport was, in reality, little more than a submarine engine on blocks, but the nuclear industry and its acolytes will say that it was the beginning of billions of kilowatts of power, promoted (without a hint of irony) as “clean, safe, and too cheap to meter.” It was also, however, the beginning of what is now a, shall we say, weightier legacy: 72,000 tons of nuclear waste.

Atoms for peace, problems forever

News of Fermi’s initial success was communicated by physicist Arthur Compton to the head of the National Defense Research Committee, James Conant, with artistically coded flair:

Compton: The Italian navigator has landed in the New World.
Conant: How were the natives?
Compton: Very friendly.

But soon after that initial success, CP-1 was disassembled and reassembled a short drive away, in Red Gate Woods. The optimism of the physicists notwithstanding, it was thought best to continue the experiments with better radiation shielding–and slightly removed from the center of a heavily populated campus. The move was perhaps the first necessitated by the uneasy relationship between fissile material and the health and safety of those around it, but if it was understood as a broader cautionary tale, no one let that get in the way of “progress.”

A stamp of approval: the US Postal Service commemorated Eisenhower's initiative in 1955.

By the time the Shippingport reactor went critical, North America already had a nuclear waste problem. The detritus from manufacturing atomic weapons was poisoning surrounding communities at several sites around the continent (not that most civilians knew it at the time). Meltdowns at Chalk River in Canada and the Experimental Breeder Reactor in Idaho had required fevered cleanups, the former of which included the help of a young Navy officer named Jimmy Carter. And the dangers of errant radioisotopes were increasing with the acceleration of above-ground atomic weapons testing. But as President Eisenhower extolled “Atoms for Peace,” and the US Atomic Energy Commission promoted civilian nuclear power at home and abroad, a plan to deal with the “spent fuel” (as used nuclear fuel rods are termed) and other highly radioactive leftovers was not part of the program (beyond, of course, extracting some of the plutonium produced by the fission reaction for bomb production, and the promise that the waste generated by US-built reactors overseas could at some point be marked “return to sender” and repatriated to the United States for disposal).

Attempts at what was called “reprocessing”–the re-refining of used uranium into new reactor fuel–quickly proved expensive, inefficient and dangerous, and created as much radioactive waste as it hoped to reuse. It also provided an obvious avenue for nuclear weapons proliferation because of the resulting production of plutonium. The threat of proliferation (made flesh by India’s test of an atomic bomb in 1976) led President Jimmy Carter to cancel the US reprocessing program in 1977. Attempts by the Department of Energy to push mixed-oxide (MOX) fuel fabrication (combining uranium and plutonium) over the last dozen years has not produced any results, either, despite over $5 billion in government investments.

In fact, there was no official federal policy for the management of used but still highly radioactive nuclear fuel until passage of The Nuclear Waste Policy Act of 1982. And while that law acknowledged the problem of thousands of tons of spent fuel accumulating at US nuclear plants, it didn’t exactly solve it. Instead, the NWPA started a generation of political horse trading, with goals and standards defined more by market exigencies than by science, that leaves America today with what amounts to over five-dozen nominally temporary repositories for high-level radioactive waste–and no defined plan to change that situation anytime soon.

When you assume…

Read the rest of this entry →

Yule Fuel

8:30 am in Uncategorized by Gregg Levine

Yes, it’s time for that metaphor again. If you grew up near a TV during the 1960s or ’70s, you probably remember the ever-burning Yule Log that took the place of programming for a large portion of Christmas Day. The fire burned, it seemed, perpetually, never appearing to consume the log, never dimming, and never, as best the kid who stared at the television could tell, ever repeating.

Now, if you have been watching this space about as intently as I once stared at that video hearth, perhaps you are thinking that this eternal flame is about to reveal itself as a stand-in for nuclear power. You know, the theoretically bottomless, seemingly self-sustaining, present yet distant, ethereal energy source that’s clean, safe and too cheap to meter. Behold: a source of warmth and light that lasts forever!

Yeah. . . you wish! Or, at least you’d wish if you were a part of the nuclear industry or one of its purchased proxies.

But wishing does not make it so. A quick look at the US commercial reactor fleet proves there is nothing perpetual or predictable about this supposedly dependable power source.

Both reactors at San Onofre have been offline for almost a year, after a radioactive leak revealed dangerously worn heat transfer tubes. Nebraska’s Fort Calhoun plant has been shutdown since April of 2011, initially because of flooding from the Missouri River, but now because of a long list of safety issues. And it has been 39 months since Florida’s Crystal River reactor has generated even a single kilowatt, thanks to a disastrously botched repair to its containment that has still not been put right.

October’s Hurricane Sandy triggered scrams at two eastern nuclear plants, and induced an alert at New Jersey’s Oyster Creek reactor because flooding threatened spent fuel storage. Other damage discovered at Oyster Creek after the storm, kept the facility offline for five weeks more.

Another plant that scrammed during Sandy, New York’s Nine Mile Point, is offline again (for the third, or is it the fourth time since the superstorm?), this time because of a containment leak. (Yes, a containment leak!)

Other plants that have seen substantial, unplanned interruptions in power generation this year include Indian Point, Davis-Besse, Diablo Canyon, Hope Creek, Calvert Cliffs, Byron, St. Lucie, Pilgrim, Millstone, Susquehanna, Prairie Island, Palisades. . . honestly, the list can–and does–go on and on. . . and on. Atom-heads love to excuse the mammoth capital investments and decades-long lead times needed to get nuclear power plants online by saying, “yeah, but once up, they are like, 24/7/365. . . dude!”

Except, of course, as 2012–or any other year–proves, they are very, very far from anything like that. . . dude.

So, no, that forever-flame on the YuleTube is not a good metaphor for nuclear power. It is, however, a pretty good reminder of the still going, still growing problem of nuclear waste.

December saw the 70th anniversary of the first self-sustaining nuclear chain reaction, and the 30th anniversary of the first Nuclear Waste Policy Act. If the 40-year difference in those anniversaries strikes you as a bit long, well, you don’t know the half of it. (In the coming weeks, I hope to say more about this.) At present, the United States nuclear power establishment is straining to cope with a mountain of high-level radioactive waste now exceeding 70,000 tons. And with each year, the country will add approximately 2,000 more tons to the pile.

And all of this waste, sitting in spent fuel pools and above-ground dry casks– supposedly temporary storage–at nuclear facilities across the US, will remain extremely toxic for generations. . . for thousands and thousands of generations.

There is still no viable plan to dispose of any of this waste, but the nation’s creaky reactor fleet continues to make it. And with each refueling, another load is shoehorned into overcrowded onsite storage, increasing the problem, and increasing the danger of spent fuel accidents, including, believe it or not, a type of fire that cannot be extinguished with water.

So, if you want to stare at a burning log and think about something, think about how that log is not so unlike a nuclear fuel assembly exposed to air for a day or two. . . or think of how, even if it is not actually burning, the high levels of radiation tossed out from those uranium “logs” will create heat and headaches for hundreds of thousands of yuletides to come.

Oh, and, if you are still staring at the Yule log on a cathode ray tube television, don’t sit too close. . . because, you know, radiation.

Merry Christmas.

Edison Con? San Onofre Nuclear Plant Owner Proposes Reactor Restart

9:00 am in Uncategorized by Gregg Levine

Containment domes or shell game? (Aerial view of San Onofre Nuclear Generating Station by Jelson25 via wikipedia)

Southern California Edison (SCE), the operator of the troubled San Onofre Nuclear Generating Station (SONGS), has proposed to restart one of the facility’s two damaged reactors without repairing or replacing the parts at the root of January’s shutdown. The Thursday announcement came over eight months after a ruptured heat transfer tube leaked radioactive steam, scramming Unit 3 and taking the entire plant offline. (Unit 2, offline for maintenance, revealed similar tube wear in a subsequent inspection; Unit 1 was taken out of service in 1992.)

But perhaps more tellingly, Edison’s plan–which must be reviewed by the Nuclear Regulatory Commission–was issued just weeks before the mandated start of hearings on rate cuts. California law requires an investigation into ratepayer relief when a facility fails to deliver electricity for nine months. Support of the zombie San Onofre plant has cost California consumers $54 million a month since the shutdown. It has been widely believed since spring that Unit 3 would likely never be able to safely generate power, and that the almost identical Unit 2 was similarly handicapped and would require a complete overhaul for its restart to even be considered.

Yet, calls for more immediate rate rollbacks were rebuffed by Edison and ignored by members of the California Public Utilities Commission (CPUC). Despite studies that showed SONGS tube wear and failure was due to bad modeling and flawed design, and a company pledge to layoff of one-third of plant employees, San Onofre’s operators claimed they were still pursuing a restart.

Thursday’s proposal for that restart does not directly engage any of the concerns voiced by nuclear engineers and watchdog groups.

When SONGS installed new turbines in 2010 and 2011, it did not replace “like with like”–that would have required a costly custom machining of parts no longer routinely manufactured. Instead, San Onofre’s owners moved to “uprate” their generators–cramming in more transfer tubes to increase output–with the nuclear industry equivalent of “off the shelf” parts. It was a transparently profit-driven decision, but more crucially, it was a major design change that should have required a lengthy license-amendment process at the NRC.

Federal regulators, however, took on faith industry assurances that changes were not that big a deal, and approved San Onofre’s massive retrofit without an extensive investigation into the plan.

What is now understood to have happened is that the design of new parts for San Onofre was based on flawed computer models that failed to anticipate new fluid dynamics, increased vibration, and more rapid wear in the numerous thin, metal, heat transfer tubes. It’s a flaw that presumably would have turned up in a more rigorous regulatory review, and, again, a problem not directly addressed by Edison’s restart plan.

Rather than repair or replace the tubes and turbines, San Onofre’s owners propose to simply plug the most severely degraded tubes in Unit 2 and then run that reactor at 70 percent power. After five months, Unit 2 would be shut down and inspected. (There was no plan offered for the future of Unit 3.)

Why 70 percent? Edison said it believes that would lessen vibration and decrease the rate of wear on the heat transfer tubes. Does that make any scientific sense? Not in the eyes of nuclear engineer Arnie Gundersen, who has produced three studies on San Onofre’s problems:

Restarting San Onofre without repairing the underlying problems first turns Southern California into a massive science experiment. Running at the reactor at a 30 percent reduction in power may not fix the problems but rather make them worse or shift the damage to another part of the generators. It’s a real gamble to restart either unit without undertaking repairs or replacing the damaged equipment.

S. David Freeman, former head of the Los Angeles Department of Water and Power, as well as the Tennessee Valley Authority, and now a senior advisor to Friends of the Earth, is even more pointed:

Neither of the reactors at San Onofre are safe to operate. While Edison may be under financial pressure to get one up and running, operating this badly damaged reactor at reduced power without fixing or replacing these leaky generators is like driving a car with worn-out brakes but promising to keep it under 50 miles an hour.

That is the scenario now before the NRC. An experimental roll of the dice within 50 miles of 8.4 million California residents, offered up with a “trust us” by the same folks who got the modeling dangerously wrong last time, versus multiple studies calling into question the viability of a plant that already has a long history of safety and engineering problems. Regulators are at least talking as if they understand:

“The agency will not permit a restart unless and until we can conclude the reactor can be operated safely,” NRC Chairman Allison Macfarlane said. “Our inspections and review will be painstaking, thorough and will not be rushed.”

The right words, but hardly reassuring ones given the commission’s past actions (or inactions) on San Onofre and numerous other dangerous events across the nation’s aging nuclear fleet.

The sting that keeps on stinging

But does NRC approval really matter to Southern California Edison, at least in the short run?

Operating only one of San Onofre’s reactors at two-thirds of its proposed output for five months sometime next year–which is the best-case scenario–does not provide a meaningful addition to California’s near- or long-term energy outlook. (California officials are already making plans for another year without San Onofre.) In addition, San Onofre has other problems to address, such as aforementioned staffing issues, new seismic evaluations required in the wake of the Fukushima disaster, newfound safety lapses, and ongoing concerns about the quality of the concrete used to plug 28-foot holes in both reactors’ containment domes (the holes were cut for installation of the new turbines, inquiries about the strength and durability of the concrete were made a year ago, but, to date, the NRC has not released a report).

But Thursday’s proposal does provide Edison with a modicum of cover going into an October 9 public information session and the upcoming debate over whether California consumers should still have to pay for a power plant that provides no power.

Indeed, billing for services not rendered could be considered a profit center for the US nuclear industry. San Onofre is but one case; ratepayers in Florida are also familiar with the scam.

The same day SCE submitted its SONGS plan, attorneys for the Florida Public Service Commission (PSC), Progress Energy and Florida Power & Light (FPL), appeared before the Florida Supreme Court to defend an “advance fee” that has allowed the utilities to soak Sunshine State ratepayers for upwards of $1 billion. The money collected, and additional fees approved last year by the PSC, are slated for the construction of new nuclear reactors in Levy County and at Turkey Point.

The court challenge was brought by the Southern Alliance for Clean Energy, which contends there is little evidence Progress or FPL can or ever really intend to build the new facilities. Indeed, FPL has spent some of its takings on existing operations, while Progress has blown hundreds of millions of dollars trying to repair its Crystal River nuclear plant, which has been offline since 2009, and likely will never return to service.

What do attorneys for the utilities say when challenged on these points? That their intent is borne out by the fact that both are still seeking construction and operating licenses from the Nuclear Regulatory Commission.

There is no indication NRC approval on those projects is imminent (in fact, no NRC approvals of any projects are imminent), nor are there any guarantees that the projects could be fully financed even with licenses and all that ratepayer cash.

But, be it for future fantasies or current failures, from Florida to California, electricity consumers are paying higher prices to perpetuate the myth of a nuclear renaissance and balance the books of the nuclear industry. . . while industry officials, lobbyists and favored politicians pocket a healthy share.

And not satisfied with that cushy arrangement, San Onofre’s operators are also pushing for permission to move its ratepayer-financed decommissioning fund into riskier investment properties. The industry promises this will bring higher yields, but, of course, it also chances bigger losses–and it guarantees larger fees, which would be passed on to Southern California consumers upon CPUC approval.

None of these actions–not the investment games, the rate hikes or the experiment with San Onofre’s damaged reactor–are actually about providing a steady supply of safe, affordable energy. These are all pecuniary plays. Across the country and across the board, nuclear operators seem more interested in cashing in than putting out.

More prudent for governments and utility commissions, and more beneficial for ratepayers, of course, would be to stop paying the vig to nuclear’s loan sharks, stop throwing good money after bad in a sector that is dying and dangerous, and start making investments in truly clean, truly renewable, and increasingly far more economical 21st Century energy technologies.

Until that happens, the most profitable thing about nuclear power will continue to be the capacity to charge for a service that might never be provided. Private utilities have understood this for a long time; ratepayers are becoming painfully aware of it, too. The question is, when will government regulators and utility commissions understand it–or at least fess up to being in on the con?

* * * *

Stop the Madness! Or at least learn more about it. Join me on Saturday, October 13, at 5 PM Eastern time (2 PM Pacific) when I host an FDL Book Salon chat with Joseph Mangano, author of Mad Science: The Nuclear Power Experiment.

Nuclear “Renaissance” Meets Economic Reality, But Who Gets the Bill?

10:15 am in Uncategorized by Gregg Levine

Crystal River Nuclear Generating Plant, Unit 3, 80 miles north of Tampa, FL. (photo: U.S. NRC)

Crystal River is back in the news. Regular readers will recall when last we visited Progress Energy Florida’s (PEF) troubled nuclear reactor it was, shall we say, hooked on crack:

The Crystal River story is long and sordid. The containment building cracked first during its construction in 1976. That crack was in the dome, and was linked to a lack of steel reinforcement. Most nuclear plants use four layers of steel reinforcement; Crystal River used only one. The walls were built as shoddily as the dome.

The latest problems started when Crystal River needed to replace the steam generator inside the containment building. Rather than use an engineering firm like Bechtel or SGT–the companies that had done the previous 34 such replacements in the US–Progress decided it would save a few bucks and do the job itself.

Over the objections of on-site workers, Progress used a different method than the industry standard to cut into the containment building. . . and that’s when this new cracking began. It appears that every attempt since to repair the cracks has only led to new “delamination” (as the industry calls it).

Sara Barczak of CleanEnergy Footprints provides more detail on the last couple of years:

The Crystal River reactor has been plagued with problems ever since PEF self-managed a steam generation replacement project in September 2009. The replacement project was intended to last 3 months, until PEF informed the Commission that it had cracked the containment structure during the detensioning phase of the project. PEF subsequently announced that the CR3 reactor would be repaired and back in service by the 3rd quarter of 2010…then by the 4th quarter of 2010…and then by the first quarter of 2011. On March 15, 2011 PEF informed the Commission that it had cracked the reactor again during the retensioning process and subsequently told the Commission that it estimated repair costs of $1.3 billion and a return to service in 2014. Shortly thereafter, the Humpty Dumpty Crystal River reactor suffered yet another crack on July 26, 2011.

That July crack was later revealed to be 12-feet long and 4-feet wide–and here, at least when it came to notifying the Nuclear Regulatory Commission, “later” means much later. . . like four months later.

The issue, of course–as anyone with a lifetime crack habit will tell you–is that this all gets very expensive. Not only is there the cost of the repairs. . . and the repairs to the repairs. . . and the repairs to the repairs to the repairs. . . there is the cost of replacing the energy that was supposed to be supplied to PEF customers by the crippled reactor.

And then there is the cost of the new reactors. . . .

Wait, what? Read the rest of this entry →

San Onofre: One Leaks, the Other Doesn’t… Yet

11:30 am in Uncategorized by Gregg Levine

For those who thought that, with the new year, nuclear power had turned a page and put its “annus horribilis” behind it–as if the calendar were somehow the friend America’s aging reactors–let’s take a quick look at January 2012.

First, a glance across the Pacific, where the month began with the revelation that the Japanese government purposely downplayed their assessments of the Fukushima disaster–hiding the worst projected scenarios from the public from soon after the March earthquake by classifying the documents as personal correspondence–and ended with discovery of yet another large leak of radioactive water from one of the crippled reactors.

Closer to home, the lone reactor at Wolf Creek, Kansas, was shutdown on January 13 after the failure of a main generator breaker was followed by a still-unexplained loss of power to an electrical transformer. Diesel generators kicked in to run the safety systems until external power was restored, but the plant remains offline while a Nuclear Regulatory Commission inspection team tries to figure out what went wrong.

On the morning of January 30, a power failure caused a reactor at Exelon’s Byron Generating Station to scram, which in turn required a wee bit of venting: Read the rest of this entry →

Gregory Jaczko Has a Cold

8:30 am in Uncategorized by Gregg Levine

NRC Chairman Gregory Jaczko (photo: pennstatelive)

In April 1966, Esquire Magazine published a story by Gay Talese that is still considered one of the greatest magazine articles of all time; the article, the cover story, was titled “Frank Sinatra Has a Cold.”

The piece, still very much worth the read, says much about celebrity, journalism, and, of course, celebrity journalism, but germane here is a point Talese makes early on: for most people, having a cold is a trivial matter–after all, it’s called the “common” cold–but when a man, a cultural icon, a giant of stage and screen like Sinatra (remember, this is 1966) has a cold, well. . . .

Frank Sinatra with a cold is a big deal. It affects him, his mood, his ability to perform, and so it affects his friends, his entourage, his personal staff of 75, his audience, and perhaps a part of the greater popular culture. In other words, as Talese wants you to understand, in this case, a cold is anything but trivial.

Gregory Jaczko, the chairman of the United States Nuclear Regulatory Commission, made some comments to the press earlier this week. Jaczko, it seems, is worried. He believes, as noted in an Associated Press story, that “U.S. nuclear plant operators have become complacent, just nine months after the nuclear disaster in Japan.” The NRC head thinks that a slew of events at over a dozen domestic nuclear facilities reveal the safety of America’s reactors to be something less than optimal.

To be clear, safety concerns at any kind of plant, be it a soda bottler or a microchip manufacturer, are probably not trivial, but when the safe and secure operation of a nuclear facility comes into question–as the aftermath of Chernobyl or the ongoing crisis in Japan will tell you–it ratchets up concern to a whole different level. So, when the man who more or less serves as the chief safety officer for the entirety of the nation’s nuclear infrastructure says he’s worried, many, many other people should be worried, too.

To put it another way, Greg Jaczko has a cold.

But that’s not the scariest part. Read the rest of this entry →

The Party Line – December 2, 2011: Nuclear’s “Annus Horribilis” Confirms Its Future Is in the Past

9:59 am in Uncategorized by Gregg Levine

In the immediate aftermath of the Japanese earthquake and tsunami that triggered the horrific and ongoing disaster at the Fukushima Daiichi nuclear power generating station, President Barack Obama went out on a bit of a limb, striking a tone markedly different from his fellow leaders in the industrialized world. Speaking about Japan and its effect on America’s energy future–once within days of the quake, and again later in March–the president made a point of reassuring Americans that his commitment to nuclear power would stay strong. While countries like Germany and Japan–both more dependent on nuclear power than the US–took Fukushima as a sign that it was time to move away from nuclear, Obama wanted to win the future with the same entrenched industry that so generously donated to his winning the 2008 election.

But a funny thing happened on the way to winning our energy future–namely, our energy present.

As November drew to a close, an article on AOL Energy (yes, it seems AOL has an energy page) declared 2011 to be “nuclear’s annus horribilis“:

March 2011 brought the 9.0 magnitude earthquake off northeastern Japan that sparked a tsunami whose waves may have exceeded 45 feet. Tokyo Electric Power Company’s oldest nuclear station, Fukushima Daiichi, apparently survived the earthquake, but its four oldest reactors didn’t survive that wall of water. Nuclear experts are still figuring out what all went wrong, and tens of thousands still haven’t returned home as Japanese authorities try to decontaminate radioactive hot spots.

In April, massive tornadoes that devastated the southeast swept near the Tennessee Valley Authority’s Browns Ferry plant.

In June, droughts sparked wildfires across the Southwest, including one that threatened the Los Alamos National Laboratory, where nuclear weapons materials are stored.

June also brought record floods across the upper Midwest. For weeks Omaha Public Power District’s Fort Calhoun nuclear plant was essentially an island.

August saw the 5.8 magnitude Virginia earthquake just 11 miles from Dominion Energy’s North Anna plant. The plant shut safely, and returned to service mid-November after extensive checks found no damage even though ground motion briefly exceeded the plant’s design.

That list, as readers of this space will no doubt note, is far from complete. This year has also seen serious events at nuclear plants in California, Maryland, Michigan, New Hampshire and Ohio. But, perhaps even more troubling is the strangely positive tone of the piece.

Despite its ominous headline, it seems the message is: “Yeah, lots of nasty business in 2011, but 2011 is almost over. We got through it and no one died (at least no one in the US), so. . . problem solved!” It’s an attitude absurd on its face, of course, the passage of time is not the friend of America’s aging nuclear infrastructure–quite the opposite–but it is also a point that can’t survive the week in which it was made.

Take North Anna, for example. Yes, it is true that the NRC signed off on a restart in the waning hours of November 11, but the two generators at Dominion’s plant were not back at full power till November 28 because there was indeed damage–some of which was not discovered until after the restart process began.

A week earlier, a fire at Ohio’s crippled Davis-Besse facility cut ventilation to the reactor control room. A faulty valve in a pipe sending water to the reactor core leaked on an electrical switchbox, triggering an electrical arc, which started the fire. This could have been a potentially catastrophic emergency. . . had the reactor not been shut down seven weeks earlier to replace an already once previously replaced, corroded, 82-ton reactor lid. This “transplant operation” revealed a 30-foot crack in the concrete shield building that will require a separate repair program. . . which will in no way be completed before the end of the year.

The day after that fire, November 20, the St. Petersburg Times reported that Progress Energy’s Crystal River nuclear power plant in Citrus County, Florida, had discovered a 12-foot by 4-foot crack and crumbled concrete in its containment building in late July, but failed to notify the Nuclear Regulatory Commission. This was a patently intentional omission, as Progress Energy was already reporting to the NRC about repairs to two other major cracks in the same building dating back to October 2009 and March 2011.

The Crystal River story is long and sordid. The containment building cracked first during its construction in 1976. That crack was in the dome, and was linked to a lack of steel reinforcement. Most nuclear plants use four layers of steel reinforcement; Crystal River used only one. The walls were built as shoddily as the dome.

The latest problems started when Crystal River needed to replace the steam generator inside the containment building. Rather than use an engineering firm like Bechtel or SGT–the companies that had done the previous 34 such replacements in the US–Progress decided it would save a few bucks and do the job itself.

Over the objections of on-site workers, Progress used a different method than the industry standard to cut into the containment building. . . and that’s when this new cracking began. It appears that every attempt since to repair the cracks has only led to new “delamination” (as the industry calls it).

At this point, most have determined that the best plan going forward is to tear down the substandard structure and build a properly reinforced new one, but Progress thinks they have a better idea. Crystal River’s operator is trying to replace the wall panels–all six of them–one by one.

Funny enough, the cost of this never-before-tried retrofit is about the same as the cost of a whole new building. But the full rebuild would take more time–and there’s the rub.

Every day that Crystal River is offline costs Progress money because they have to buy energy to replace what they agreed to provide to the region from this nuclear facility. Each year that the plant is offline is said to cost $300 million. The price tag on this little cracking problem so far–not counting the actual costs of the repair–is $670 million.

Who will pay that bill? Well, if you live in Florida, the answer is: you:

Customers will pay $140 million next year so Progress Energy Florida can buy electricity from other sources while a nuclear plant remains shut down for repairs.

Consumer advocates opposed the power replacement charge, which will take effect Jan. 1, but it won unanimous approval Tuesday from the five-member Florida Public Service Commission.

The panel’s decision is a prelude to a determination next year whether a portion of the repair costs should be passed on to customers or paid in full by the company’s investors owing to problems that have delayed the work. The Crystal River plant was closed for repairs in 2009 but now isn’t expected to reopen until 2014. That’s about three years later than initially expected.

The repair bill is expected to total $2.5 billion. The utility wants customers to pay $670 million, or about a quarter of that amount.

Interesting how that $670 million exactly mirrors the replacement energy costs through today. Students of the Florida Public Service Commission would probably be skeptical that the bailout will really stop there–remember, Florida residents already pay a surcharge on their utility bills for possible (but in no way guaranteed) future nuclear power construction.

And to say that it’s all about the money would not be pure speculation. As the St. Petersburg Times reports, while the good people at Crystal River failed to notify the NRC (or the Public Service Commission) about their latest troubles in a timely fashion, Progress Energy didn’t dare keep secrets from the US Securities and Exchange Commission. On August 8, the same day it neglected to mention the new cracks in a report to the PSC, Progress filed its annual report to the SEC and stated “additional cracking or delaminations may have occurred or could occur during the repair process.”

Given the many revelations of just how casual SEC enforcement can be, it is disturbing to think a nuclear provider had more to worry about from the SEC than from the NRC, the agency given direct oversight of nuclear plant licensing and safety.

Disturbing, but not surprising. This year has also revealed the cozy relationship between the nuclear industry and the NRC. An AP exposé made that clear over the summer, but one need look no further than the AOL Energy story:

[Nuclear Energy Institute CEO Marvin] Fertel said the industry and NRC are “in very good alignment” on the issues raised by 2011 events. The concern for utilities is the “cumulative impact” of new rules, he said, and making sure they’re ranked so plant staffs attack those with the most safety benefit first and the cost is manageable.

The government and the industry agree–safety must be addressed with an eye toward cost. And the tens of millions of Americans living in the shadow of a nuclear reactor will see just what this means as the watered-down post-Fukushima recommendations are slowly proposed and implemented–with little fully required of plant operators before 2016.

Indeed, the global nuclear industry is proceeding not just as if it is business as usual–when it comes to the United States, manufacturers of nuclear plant components are already betting on a new wave of reactor construction. Over the Thanksgiving weekend, Yomiuri Shimbun reported that Toshiba Corp. is preparing to export turbine equipment to the US.

The turbines are for Toshiba-owned Westinghouse Electric Company-designed AP1000 reactors proposed for sites in Georgia and South Carolina. As previously reported, the AP1000 is a new reactor design–a new design that has not yet officially been approved by the Nuclear Regulatory Commission. Still, the operators of the plants have already started to procure the equipment.

All of which raises the question, how is it that, in an age when credit is so hard to come by, an industry so focused on the bottom line feels secure in moving forward with commitments on a plan that is still officially going through the regulatory pipeline?

The assurances come from the top, and so does the money.

In contrast to pledges to, say, close Guantanamo or give Americans a public health insurance option, when it comes to nuclear power, Barack Obama is as good as his word. In February, Obama pledged $8.33 billion in federal loan guarantees to Southern Co., the operator of Georgia’s Plant Vogtle, the proposed home of two new AP1000 reactors. Again, this pledge came in advance of any approval of the design or licensing of the construction.

So, perhaps the nuclear industry is right to feel their “annus horribilis” is behind them, at least when it comes to their business plans. And with the all-too-common “privatize the profits, socialize the risks” way the utilities are allowed to do business, one might even doubt this last annus was really that horribilis for them at all.

But for the rest of us, the extant and potential problems of nuclear power are not limited to any particular period of time. The dangers of nuclear waste, of course, are measured in tens of thousands of years, the Fukushima crisis is lived by millions every minute, and the natural disasters, “events” and accidents that plague an aging, expensive and insufficiently regulated American nuclear industry are an anytime, anywhere reminder that future cannot be won by repeating the mistakes of the past.