You are browsing the archive for David Lochbaum.

Fukushima Two Years Later: Many Questions, One Clear Answer

7:30 am in Uncategorized by Gregg Levine

Fukushima's threats to health and the environment continue. (graphic: Surian Soosay via flickr)

You can’t say you have all the answers if you haven’t asked all the questions. So, at a conference on the medical and ecological consequences of the Fukushima nuclear disaster, held to commemorate the second anniversary of the earthquake and tsunami that struck northern Japan, there were lots of questions. Questions about what actually happened at Fukushima Daiichi in the first days after the quake, and how that differed from the official report; questions about what radionuclides were in the fallout and runoff, at what concentrations, and how far they have spread; and questions about what near- and long-term effects this disaster will have on people and the planet, and how we will measure and recognize those effects.

A distinguished list of epidemiologists, oncologists, nuclear engineers, former government officials, Fukushima survivors, anti-nuclear activists and public health advocates gathered at the invitation of The Helen Caldicott Foundation and Physicians for Social Responsibility to, if not answer all these question, at least make sure they got asked. Over two long days, it was clear there is much still to be learned, but it was equally clear that we already know that the downsides of nuclear power are real, and what’s more, the risks are unnecessary. Relying on this dirty, dangerous and expensive technology is not mandatory–it’s a choice. And when cleaner, safer, and more affordable options are available, the one answer we already have is that nuclear is a choice we should stop making and a risk we should stop taking.

“No one died from the accident at Fukushima.” This refrain, as familiar as multiplication tables and sounding about as rote when recited by acolytes of atomic power, is a close mirror to versions used to downplay earlier nuclear disasters, like Chernobyl and Three Mile Island (as well as many less infamous events), and is somehow meant to be the discussion-ender, the very bottom-line of the bottom-line analysis that is used to grade global energy options. “No one died” equals “safe” or, at least, “safer.” Q.E.D.

But beyond the intentional blurring of the differences between an “accident” and the probable results of technical constraints and willful negligence, the argument (if this saw can be called such) cynically exploits the space between solid science and the simple sound bite.

“Do not confuse narrowly constructed research hypotheses with discussions of policy,” warned Steve Wing, Associate Professor of Epidemiology at the University of North Carolina’s Gillings School of Public Health. Good research is an exploration of good data, but, Wing contrasted, “Energy generation is a public decision made by politicians.”

Surprisingly unsurprising

A public decision, but not necessarily one made in the public interest. Energy policy could be informed by health and environmental studies, such as the ones discussed at the Fukushima symposium, but it is more likely the research is spun or ignored once policy is actually drafted by the politicians who, as Wing noted, often sport ties to the nuclear industry.

The link between politicians and the nuclear industry they are supposed to regulate came into clear focus in the wake of the March 11, 2011 Tohoku earthquake and tsunami–in Japan and the United States.

The boiling water reactors (BWRs) that failed so catastrophically at Fukushima Daiichi were designed and sold by General Electric in the 1960s; the general contractor on the project was Ebasco, a US engineering company that, back then, was still tied to GE. General Electric had bet heavily on nuclear and worked hand-in-hand with the US Atomic Energy Commission (AEC–the precursor to the NRC, the Nuclear Regulatory Commission) to promote civilian nuclear plants at home and abroad. According to nuclear engineer Arnie Gundersen, GE told US regulators in 1965 that without quick approval of multiple BWR projects, the giant energy conglomerate would go out of business.

It was under the guidance of GE and Ebasco that the rocky bluffs where Daiichi would be built were actually trimmed by 10 meters to bring the power plant closer to the sea, the water source for the reactors’ cooling systems–but it was under Japanese government supervision that serious and repeated warnings about the environmental and technological threats to Fukushima were ignored for another generation.

Failures at Daiichi were completely predictable, observed David Lochbaum, the director of the Nuclear Safety Project at the Union of Concerned Scientists, and numerous upgrades were recommended over the years by scientists and engineers. “The only surprising thing about Fukushima,” said Lochbaum, “is that no steps were taken.”

The surprise, it seems, should cross the Pacific. Twenty-two US plants mirror the design of Fukushima Daiichi, and many stand where they could be subject to earthquakes or tsunamis. Even without those seismic events, some US plants are still at risk of Fukushima-like catastrophic flooding. Prior to the start of the current Japanese crisis, the Nuclear Regulatory Commission learned that the Oconee Nuclear Plant in Seneca, South Carolina, was at risk of a major flood from a dam failure upstream. In the event of a dam breach–an event the NRC deems more likely than the odds that were given for the 2011 tsunami–the flood at Oconee would trigger failures at all four reactors. Beyond hiding its own report, the NRC has taken no action–not before Fukushima, not since.

The missing link

Read the rest of this entry →

End-of-Summer News Puts Nuclear Renaissance on Permanent Vacation

6:59 am in Uncategorized by Gregg Levine

Calvert Cliffs Nuclear Power Plant, Units 1 & 2, near Lusby Maryland. (photo: NRCgov)

The Nuclear Regulatory Commission cannot issue a license for the construction and operation of a new nuclear reactor in Maryland–that is the ruling of the NRC’s Atomic Safety and Licensing Board (ASLB) handed down Thursday.

In their decision, the ASLB agreed with intervenors that the Calvert Cliffs 3 reactor project planned for the shores of Chesapeake Bay violated the Atomic Energy Act’s prohibition against “foreign ownership, control, or domination.” UniStar, the parent company for the proposal, is wholly owned by French energy giant Électricité de France (EDF).

EDF had originally partnered with Constellation Energy, the operator of two existing Calvert Cliffs reactors, but Constellation pulled out of the project in 2010. At the time, Constellation balked at government requirements that Constellation put $880 million down on a federal loan guarantee of $7.6 billion (about 12 percent). Constellation wanted to risk no more than one or two percent of their own capital, terms the feds were then willing to meet if Constellation and EDF could guarantee the plant’s completion. Constellation also found that requirement too onerous.

Constellation has since been purchased by Exelon.

The ASLB decision technically gives EDF 60 days to find a new American partner, but given the history and the current state of the energy market, new suitors seem highly unlikely. It marks only the second time a license has been denied by the ASLB. (The first, for the Byron, Illinois plant in 1984 was overturned on appeal. Byron opened the next year, and Illinois’s groundwater has never been the same.) The NRC also declined to grant a license to the South Texas Project late last year when US-based NRG Energy (corporate ID courtesy of the Department of Redundancy Department) pulled out of the project, leaving Japanese-owned Toshiba as the only stakeholder.

The Calvert Cliffs intervenors were led by the Nuclear Information and Resource Service (NIRS), which has been fighting Calvert Cliffs 3 almost since its inception. NIRS was joined by Beyond Nuclear, Public Citizen and Southern Maryland CARES.

Michael Mariotte, Executive director of NIRS, called Thursday’s decision “a blow to the so-called ‘nuclear renaissance,’” noting that back in 2007, when permit requests were submitted for Calvert Cliffs 3, the project was considered the “flagship” of a coming fleet of new reactors. “Now,” said Mariotte, “it is a symbol for the deservedly failed revival of nuclear power in the US.”

A symbol, yes, but far from the only symbol. Read the rest of this entry →

For Nuclear Power This Summer, It’s Too Darn Hot

7:59 am in Uncategorized by Gregg Levine

You know that expression, “Hotter than July?” Well, this July, July was hotter than July. Depending on what part of the country you live in, it was upwards of three degrees hotter this July than the 20th Century average. Chicago, Denver, Detroit, Indianapolis and St. Louis are each “on a pace to shatter their all-time monthly heat records.” And “when the thermometer goes way up and the weather is sizzling hot,” as the Cole Porter song goes, demand for electricity goes way up, too.

A Nuclear Power Plant on a clear day under blue skies.

Photo: Thomas Anderson / Flickr

During this peak period, wouldn’t it be great to know that you can depend on the expensive infrastructure your government and, frankly, you as ratepayers and taxpayers have been backstopping all these years? Yeah, that would be great. . . so would an energy source that was truly clean, safe, and too cheap to meter. Alas, to the surprise of no one (at least no one who watches this space), nuclear power, the origin of that catchy if not quite Porter-esque tripartite promise, cannot.

Take, for example, Braidwood, the nuclear facility that supplies much of Chicago with electricity:

It was so hot last week, a twin-unit nuclear plant in northeastern Illinois had to get special permission to continue operating after the temperature of the water in its cooling pond rose to 102 degrees.

It was the second such request from the plant, Braidwood, which opened 26 years ago. When it was new, the plant had permission to run as long as the temperature of its cooling water pond, a 2,500-acre lake in a former strip mine, remained below 98 degrees; in 2000 it got permission to raise the limit to 100 degrees.

The problem, said Craig Nesbit, a spokesman for Exelon, which owns the plant, is not only the hot days, but the hot nights. In normal weather, the water in the lake heats up during the day but cools down at night; lately, nighttime temperatures have been in the 90s, so the water does not cool.

But simply getting permission to suck in hotter water does not make the problem go away. When any thermoelectric plant (that includes nuclear, coal and some gas) has to use water warmer than design parameters, the cooling is less effective, and that loss of cooling potential means that plants need to dial down their output to keep from overheating and damaging core components. Exelon said it needed special dispensation to keep Braidwood running because of the increased demand for electricity during heat waves such as the one seen this July, but missing from the statement is that the very design of Braidwood means that it will run less efficiently and supply less power during hot weather.

Also missing from Exelon’s rationale is that they failed to meet one of the basic criteria for their exception:

Read the rest of this entry →

The Party Line – September 30, 2011: No Will, No Way: Nuclear Problems Persist, But US Fails to Seize Fukushima Moment

11:21 am in Uncategorized by Gregg Levine

As September drew to a close, residents of southwest Michigan found themselves taking in a little extra tritium, thanks to their daily habit of breathing (h/t emptywheel). The tritium was courtesy of the 40-year-old Palisades Nuclear Generating Station in Covert Township, which suffered its third “event” (as they are politely called) in less than two months, and was forced to vent an indeterminate amount of radioactive steam.

The reactor at Palisades was forced to scram after an accident caused an electrical arc in a transformer in the DC system that powers “indications and controls“–also known as monitoring devices, meters and safety valves. (Transformer arcs seem to be “in” this season–it was a transformer arc that caused the Calvert Cliffs plant in Maryland to scram during Hurricane Irene.)

While it is nice to see rectors shut themselves down when a vital system goes offline, remember that “turning off” a fission reactor is not like flicking a light switch. Shutting down a reactor is a process, and the faster it is done, the more strain it puts on the reactor and its safety and cooling systems. And even after fission is mitigated, a reactor core generates heat that requires a fully functional cooling system.

Which is kind of an interesting point when considering that Palisades had just been restarted after completing repairs to a breach in the cooling system that was reported to be leaking more than 10 gallons per minute. Prior to that, a “special inspection” was ordered August 9 after a pipe coupling in the plant’s cooling system failed.

(By the way, have no fear, Michiganders, a public affairs representative for the Nuclear Regulatory Commission reassured the public that the concentration of tritium was “far below regulatory releases,” and that “as soon as it goes out, it gets diluted further.” You know, in the air. . . that you breathe.)

News of the Palisades tritium burp came at roughly the same time as a breathless (if a press release can be breathless) announcement from Dominion Resources, the folks responsible for the North Anna nuclear plant, the facility that scrammed after being shaken beyond design specifications by the earthquake centered in nearby Mineral, Virginia:

Our investigation showed the units tripped before the loss of off-site power when multiple reactor sensors detected a slight power reduction in the reactors. . . .

The root cause team determined that this occurred as result of vibration in the reactor or the monitoring devices in the reactors, or both.

Again, good that the reactors scrammed when something registered the quake, but noteworthy again because it was previously believed that the automatic shutdown started as a result of a loss of power–power required to operate the cooling systems, not only for the reactors, but for the spent fuel pools, as well.

While North Anna remains offline as the NRC continues its inspection (and tries to decide what would constitute passing that inspection), and Palisades is also down pending an (another) investigation, both serve as only the latest in a long string of examples in what could be called The Light Water Paradox: In order to safely generate a steady stream of electricity, a light water reactor needs a steady stream of electricity.

This is not just a perpetual motion machine laugh line. This inherent flaw in the design of LWRs is at the root of two other prominent tales of nuclear safety (or lack thereof).

The first, of course, is the ongoing, ever-metastasizing disaster in Japan, where failures in the cooling systems at Fukushima Daiichi following a massive earthquake and tsunami resulted in hydrogen explosions, core meltdowns, and, likely, melt-throughs that contaminated and continue to poison sizable portions of the country and surrounding sea.

The second story concerns the proposal for the construction of two new reactors at Plant Vogtle, a nuclear power facility near Augusta, Georgia.

The Vogtle reactors would be the first to be built in the US in a generation, and they have come under some additional scrutiny in part because they would be the first of a new-design LWR called the AP1000. A riff on previous Toshiba/Westinghouse pressurized water reactors, the AP1000′s most noticeable “innovations” are meant to address the active cooling paradox. First, it has emergency “dump tanks,” reservoirs of water situated above the reactor that could, in an emergency, empty into the reactor via gravity, providing up to 72 hours of “passive” cooling. Second, rather than housing the core in a reinforced concrete shell with a metal liner, the AP1000 would have an all-steel containment vessel which would, in theory, be able to expel heat through convection.

While these two design features both highlight and attempt to address a dangerous flaw that is a part of every other nuclear facility in the United States–that water has to be actively cycled through a reactor core to keep it from melting–the design still predates the Fukushima quake, and fails to truly incorporate the lessons of that disaster.

The massive March 11 earthquake shutdown power to the Fukushima Daiichi plant, and thus the cooling systems, and the tsunami that followed flooded the diesel-powered backup generators, but that was only part of the problem. Investigations now show that even if Fukushima had in some way managed to maintain power, the cooling system would still likely have failed for at least some (and likely all) of the reactors, and (and this is important) for the spent fuel pools, as well. That is because the quake not only caused a loss of power, it also caused numerous breaches in the cooling system. Cracks in the containment vessel, broken pipes, and dislodged couplings would have likely resulted in a calamitous drop in water levels, even with full power. Less than successful attempts to restore the cooling systems with new, external power sources, and the large amounts of contaminated water that continue to pour from the plant, have demonstrated just how severely the physical infrastructure was damaged.

There are additional concerns about the design of the AP1000 (possible corrosion of the all-metal containment vessel and less than rigorous computer modeling of seismic tolerances, for instance), but, in a post-Fukushima world, simply addressing the active/passive cooling problem (and only doing so for the reactor and not the spent fuel pools) does not promise a safe nuclear facility.

And there is, perhaps, a hint that at least one of the members of the NRC understands this:

The chairman of the U.S. Nuclear Regulatory Commission says the agency may need to incorporate its findings about a nuclear disaster in Japan into a license to build a new nuclear plant in Georgia.

NRC Chairman Gregory Jaczko said Wednesday [September 28] he believes the license to build two more reactors at Plant Vogtle near Augusta should include conditions that reflect the findings of a review of this year’s disaster at the Fukushima Dai-ichi plant.

While it is true that “may” and “should” are not “will” and “must,” and it is also the case that the Fukushima taskforce recommendations themselves do not fully address the problem outlined here, Chairman Jaczko’s comments do make the point that there are indeed lessons to be learned from the Japanese crisis, and right now, in the US, that education has not taken place.

The chairman and his fellow commissioners have wrestled all summer with the pace of post-Fukushima reform. Jaczko has argued for what in NRC terms is considered a speedy consideration of the new safety regime, but a majority of the panel has managed to slow the process down to a point where no new regulations will likely be in place by the time the NRC is required to rule on the Vogtle permits.

But, because the Vogtle hearings have revealed the Chairman’s understanding of at least some of the problems, it also reveals an obvious path for Jaczko and those (such as Senator Barbara Boxer (D-CA)) who would also want any new construction or operating permits to only be approved under guidelines drafted in response to the Fukushima disaster. If the industry–and the commissioners most friendly to it–wants to move quickly ahead on new construction and the relicensing of 40-year-old plants, then it should be required that they move quickly on adopting the Fukushima taskforce recommendations. No new safety rules, no new permits–the political calculus should be that simple.

And, if the NRC won’t do the political math, then it should be up to elected government to run the financial numbers.

Building the new Vogtle reactors is projected to cost $14.8 billion. That’s projected–the existing Vogtle plant went over budget by a factor of 14. But even if the new reactors stay on budget, there is still no way they would get built without help from the Federal Government. To that end, the Obama administration okayed an $8.33 billion loan guarantee for The Southern Company, owners of Plant Vogtle, contingent on the NRC’s approval of the plans. (By way of comparison, that is 16 times the size of the loan given to the now-defunct solar technology company Solyndra.) While there are a myriad of reasons why that and other such guarantees should never be proffered, at minimum, the federal government should now freeze the financial backing for new construction until the NRC passes–and industry adopts–an enhanced safety regime.

This wouldn’t be a one-shot power play. Hot on the heals of Vogtle, the V.C. Summer nuclear facility in South Carolina is also looking to add two new AP1000 reactors, and its permit process is also underway. And financial markets understand what a bad bet that project is, too. Summer is also owned by Southern, but it is operated by SCANA. Moody’s, the bond-rating agency, just downgraded SCANA’s debt to one notch above “junk” status, citing the cost of the proposed new reactors.

Meanwhile, the Commonwealth of Virginia has handed over $7 million in precious state funds to North Carolina’s Babcock & Wilcox to open a prototype of a small modular reactor (SMR) in the town of Forest, near Lynchburg. The SMR is small, indeed–160 megawatts (in contrast to the 1,800 megawatt capability of Virginia’s North Anna plant)–and it’s built entirely underground, supposedly enhancing its safety when faced with a potential terrorist attack. How it will provide greater protection from an earthquake or flood seems (at best) less obvious.

Yet, with all of this action, all of these new designs, all of this lobbying, and all of this (as “serious” people repeatedly caution) scarce government money, still no one is addressing another part of the nuclear equation: spent fuel. With Yucca Mountain now (supposedly) abandoned, the United States has no long-term plan for handling the already large and ever-growing problem of dangerous spent nuclear fuel. Right now, each nuclear facility stores its used fuel in either pools, dry casks, or both. The spent fuel pools require an active cooling system, which faces most of the same problems inherent in reactor cooling. Dry casks–used for fuel that is cool enough to remove from the pools–are considered safer, but they are far from “safe.” They are above ground, emit some radiation, and are theoretically vulnerable to terrorist attack (and the casks at North Anna moved and sustained “cosmetic” cracks in the August earthquake). In many US plants, both pools and casks are already filled to capacity. Expanding the number of nuclear reactors only accelerates the storage crisis.

And it must be reiterated, all of this activity comes a mere six months after the start of the Fukushima disaster. The latest announcement from the Japanese government–that they will relax the evacuation order for more than 100,000 residents even though their towns have not yet been decontaminated–says nothing about an easing of the emergency, and everything about a government that frankly just doesn’t know what else to do. The United States, though obviously larger, has reactors near enough to densely populated areas that a nuclear accident would make Japan’s evacuation problem seem like a rush hour fender bender. And the US government’s plan to deal with a nuclear disaster is no more impressive than Japan’s.

The saddest part, of course, is that it needn’t be that way. Beyond the political and financial tools proposed above, the NRC actually already has the power to demand the nuclear industry own up to the new seismic reality. When Westinghouse Electric came before the commission in May, it was ordered to fix its seismic calculations. Though Westinghouse grumbled, it did not question the NRC’s authority to rule on seismic concerns.

David Lochbaum, director of the Nuclear Safety Project at the Union of Concerned Scientists, agrees that the NRC has all the authority it needs:

Nuclear regulators already have “sufficient information and knowledge” to deal with earthquake risks at existing U.S. reactors and don’t need to wait for a broader review, a safety advocate said.

The Nuclear Regulatory Commission developed seismic rules for new plants in 1996 and has since approved preliminary construction for proposed nuclear units at a Southern Co. plant in Georgia and certified an early reactor design by Toshiba Corp.’s Westinghouse Electric unit, according to comments filed with the agency today by David Lochbaum. . . .

“If the NRC truly lacks sufficient information about seismic hazards and how safety at nuclear power reactors is affected, then the agency cannot responsibly have issued early site permits and certified new reactor designs,” he said.

Of course, having the authority and exercising it are not the same thing, but just as the NRC is not truly handcuffed by the fight over the Fukushima taskforce recommendations, the entire country need not be shackled to such a flawed, dangerous and expensive energy source as nuclear. The US government has demonstrated that it has the authority to make decisions on energy sources, and it has shown that it actually has the money to invest–big money. Of course, be it the NRC, Congress or President Obama, when it comes to moving beyond nuclear to demonstrably safer and truly renewable sources, what the US has not shown is the will.

- – -

Correction: Last week’s post included the wrong location for the Seabrook nuclear plant; Seabrook is in New Hampshire. Apologies and thanks to the readers that spotted the error.