You are browsing the archive for Three Mile Island.

Fukushima Two Years Later: Many Questions, One Clear Answer

7:30 am in Uncategorized by Gregg Levine

Fukushima's threats to health and the environment continue. (graphic: Surian Soosay via flickr)

You can’t say you have all the answers if you haven’t asked all the questions. So, at a conference on the medical and ecological consequences of the Fukushima nuclear disaster, held to commemorate the second anniversary of the earthquake and tsunami that struck northern Japan, there were lots of questions. Questions about what actually happened at Fukushima Daiichi in the first days after the quake, and how that differed from the official report; questions about what radionuclides were in the fallout and runoff, at what concentrations, and how far they have spread; and questions about what near- and long-term effects this disaster will have on people and the planet, and how we will measure and recognize those effects.

A distinguished list of epidemiologists, oncologists, nuclear engineers, former government officials, Fukushima survivors, anti-nuclear activists and public health advocates gathered at the invitation of The Helen Caldicott Foundation and Physicians for Social Responsibility to, if not answer all these question, at least make sure they got asked. Over two long days, it was clear there is much still to be learned, but it was equally clear that we already know that the downsides of nuclear power are real, and what’s more, the risks are unnecessary. Relying on this dirty, dangerous and expensive technology is not mandatory–it’s a choice. And when cleaner, safer, and more affordable options are available, the one answer we already have is that nuclear is a choice we should stop making and a risk we should stop taking.

“No one died from the accident at Fukushima.” This refrain, as familiar as multiplication tables and sounding about as rote when recited by acolytes of atomic power, is a close mirror to versions used to downplay earlier nuclear disasters, like Chernobyl and Three Mile Island (as well as many less infamous events), and is somehow meant to be the discussion-ender, the very bottom-line of the bottom-line analysis that is used to grade global energy options. “No one died” equals “safe” or, at least, “safer.” Q.E.D.

But beyond the intentional blurring of the differences between an “accident” and the probable results of technical constraints and willful negligence, the argument (if this saw can be called such) cynically exploits the space between solid science and the simple sound bite.

“Do not confuse narrowly constructed research hypotheses with discussions of policy,” warned Steve Wing, Associate Professor of Epidemiology at the University of North Carolina’s Gillings School of Public Health. Good research is an exploration of good data, but, Wing contrasted, “Energy generation is a public decision made by politicians.”

Surprisingly unsurprising

A public decision, but not necessarily one made in the public interest. Energy policy could be informed by health and environmental studies, such as the ones discussed at the Fukushima symposium, but it is more likely the research is spun or ignored once policy is actually drafted by the politicians who, as Wing noted, often sport ties to the nuclear industry.

The link between politicians and the nuclear industry they are supposed to regulate came into clear focus in the wake of the March 11, 2011 Tohoku earthquake and tsunami–in Japan and the United States.

The boiling water reactors (BWRs) that failed so catastrophically at Fukushima Daiichi were designed and sold by General Electric in the 1960s; the general contractor on the project was Ebasco, a US engineering company that, back then, was still tied to GE. General Electric had bet heavily on nuclear and worked hand-in-hand with the US Atomic Energy Commission (AEC–the precursor to the NRC, the Nuclear Regulatory Commission) to promote civilian nuclear plants at home and abroad. According to nuclear engineer Arnie Gundersen, GE told US regulators in 1965 that without quick approval of multiple BWR projects, the giant energy conglomerate would go out of business.

It was under the guidance of GE and Ebasco that the rocky bluffs where Daiichi would be built were actually trimmed by 10 meters to bring the power plant closer to the sea, the water source for the reactors’ cooling systems–but it was under Japanese government supervision that serious and repeated warnings about the environmental and technological threats to Fukushima were ignored for another generation.

Failures at Daiichi were completely predictable, observed David Lochbaum, the director of the Nuclear Safety Project at the Union of Concerned Scientists, and numerous upgrades were recommended over the years by scientists and engineers. “The only surprising thing about Fukushima,” said Lochbaum, “is that no steps were taken.”

The surprise, it seems, should cross the Pacific. Twenty-two US plants mirror the design of Fukushima Daiichi, and many stand where they could be subject to earthquakes or tsunamis. Even without those seismic events, some US plants are still at risk of Fukushima-like catastrophic flooding. Prior to the start of the current Japanese crisis, the Nuclear Regulatory Commission learned that the Oconee Nuclear Plant in Seneca, South Carolina, was at risk of a major flood from a dam failure upstream. In the event of a dam breach–an event the NRC deems more likely than the odds that were given for the 2011 tsunami–the flood at Oconee would trigger failures at all four reactors. Beyond hiding its own report, the NRC has taken no action–not before Fukushima, not since.

The missing link

Read the rest of this entry →

Looking Back at Our Nuclear Future

12:30 pm in Uncategorized by Gregg Levine

The Los Angeles Times heralds the nuclear age in January 1957. (photo via wikipedia)

On March 11, communities around the world commemorated the first year of the still-evolving Fukushima Daiichi nuclear disaster with rallies, marches, moments of silence, and numerous retrospective reports and essays (including one here). But 17 days later, another anniversary passed with much less fanfare.

It was in the early morning hours of March 28, 1979, that a chain of events at the Three Mile Island nuclear power plant in Dauphin County, Pennsylvania caused what is known as a “loss of coolant accident,” resulting in a partial core meltdown, a likely hydrogen explosion, the venting of some amount of radioisotopes into the air and the dumping of 40,000 gallons of radioactive waste water into the Susquehanna River. TMI (as it is sometimes abbreviated) is often called America’s worst commercial nuclear accident, and though the nuclear industry and its acolytes have worked long and hard to downplay any adverse health effects stemming from the mishap, the fact is that what happened in Pennsylvania 33 years ago changed the face and future of nuclear power.

The construction of new nuclear power facilities in the US was already in decline by the mid 1970s, but the Three Mile Island disaster essentially brought all new projects to a halt. There were no construction licenses granted to new nuclear plants from the time of TMI until February of this year, when the NRC gave a hasty go-ahead to two reactors slated for the Vogtle facility in Georgia. And though health and safety concerns certainly played a part in this informal moratorium, cost had at least an equal role. The construction of new plants proved more and more expensive, never coming in on time or on budget, and the cleanup of the damaged unit at Three Mile Island took 14 years and cost over $1 billion. Even with the Price-Anderson Act limiting the industry’s liability, nuclear power plants are considered such bad risks that no financing can be secured without federal loan guarantees.

In spite of that–or because of that–the nuclear industry has pushed steadily over the last three decades to wring every penny out of America’s aging reactors, pumping goodly amounts of their hefty profits into lobbying efforts and campaign contributions designed to capture regulators and elected officials and propagate the age-old myth of an energy source that is clean, safe, and, if not exactly “too cheap to meter,” at least impressively competitive with other options. The result is a fleet of over 100 reactors nearing the end of their design lives–many with documented dangers and potential pitfalls that could rival TMI–now seeking and regularly getting license extensions from the Nuclear Regulatory Commission while that same agency softens and delays requirements for safety upgrades.

And all of that cozy cooperation between government and big business goes on with the nuclear industry pushing the idea of a “nuclear renaissance.” In the wake of Fukushima, the industry has in fact increased its efforts, lobbying the US and British governments to downplay the disaster, and working with its mouthpieces in Congress and on the NRC to try to kill recommended new regulations and force out the slightly more safety-conscious NRC chair. And, just this month, the Nuclear Energy Institute, the chief nuclear trade group, moved to take their message to what might be considered a less friendly cohort, launching a splashy PR campaign by underwriting public radio broadcasts and buying time for a fun and funky 60-second animated ad on The Daily Show.

All of this is done with the kind of confidence that only comes from knowing you have the money to move political practice and, perhaps, public opinion. Three Mile Island is, to the industry, the exception that proves the rule–if not an out-and-out success. “No one died,” you will hear–environmental contamination and the latest surveys now showing increased rates of Leukemia some 30 years later be damned–and that TMI is the only major accident in over half a century of domestic nuclear power generation.

Of course, this is not even remotely true–names like Browns Ferry, Cooper, Millstone, Indian Point and Vermont Yankee come to mind–but even if you discount plant fires and tritium leaks, Three Mile Island is not even America’s only meltdown.

There is, of course, the 1966 accident at Michigan’s Enrico Fermi Nuclear Generating Station, chronicled in the John Grant Fuller book We Almost Lost Detroit, but atom-lovers will dismiss this because Fermi 1 was an experimental breeder reactor, so it is not technically a “commercial” nuclear accident.

But go back in time another seven years–a full 20 before TMI–and the annals of nuclear power contain the troubling tale of another criticality accident, one that coincidentally is again in the news this week, almost 53 years later.

The Sodium Reactor Experiment

On July 12, 1957, the Sodium Reactor Experiment (SRE) at the Santa Susana Nuclear Field Laboratory near Simi Valley, California, became the first US nuclear reactor to produce electricity for a commercial power grid. SRE was a sodium-cooled reactor designed by Atomics International, a division of North American Aviation, a company more often known by the name of its other subsidiary, Rocketdyne. Southern California Edison used the electricity generated by SRE to light the nearby town of Moorpark.

Sometime during July 1959–the exact date is still not entirely clear–a lubricant used to cool the seals on the pump system seeped into the primary coolant, broke down in the heat and formed a compound that clogged cooling channels. Because of either curiosity or ignorance, operators continued to run the SRE despite wide fluctuations in core temperature and generating capacity.

Following a pattern that is now all too familiar, increased temperatures caused increased pressure, necessitating what was even then called a “controlled venting” of radioactive vapor. How much radioactivity was released into the environment is cause for some debate, for, in 1959, there was less monitoring and even less transparency. Current reconstructions, however, believe the release was possibly as high as 450 times greater than what was vented at Three Mile Island.

When the reactor was finally shut down and the fuel rods were removed (which was a trick in itself, as some were stuck and others broke), it was found that over a quarter showed signs of melting.

The SRE was eventually repaired and restarted in 1960, running on and off for another four years. Decommissioning began in 1976, and was finished in 1981, but the story doesn’t end there. Not even close.

Fifty-three years after a partial nuclear meltdown at the Santa Susana Field Laboratory site in the Chatsworth Hills, the U.S. Environmental Protection Agency has just released data finding extensive radioactive contamination still remains at the accident site.

“This confirms what we were worried about,” said Assemblywoman Julia Brownley, D-Oak Park, a long-time leader in the fight for a complete and thorough cleanup of this former Rocketdyne rocket engine testing laboratory. “This begins to answer critical questions about what’s still up there, where, how much, and how bad?”

Well, it sort of begins to answer it.

New soil samples weigh in at up to 1,000 times the radiation trigger levels (RTLs) agreed to when the Department of Energy struck a cleanup deal with the California Department of Toxic Substances in 2010. What’s more, these measurements follow two previous cleanup efforts by the DOE and Boeing, the company that now owns Santa Susana.

In light of the new findings, Assemblywoman Brownley has called on the DOE to comply with the agreement and do a real and thorough cleanup of the site. That means taking radiation levels down to what are the established natural background readings for the area. But that, as is noted by local reporter Michael Collins, “may be easier said than done”:

This latest U.S. EPA information appears to redefine what cleaning up to background actually is. Publicly available documents show that the levels of radiation in this part of Area IV where the SRE once stood are actually many thousands of times more contaminated than previously thought.

Just as troubling, the EPA’s RTLs, which are supposed to mirror the extensively tested and reported-on backgrounds of the numerous radionuclides at the site, were many times over the background threshold values (BTVs). So instead of cleaning up to background, much more radiation would be left in the ground, saving the government and lab owner Boeing millions in cleanup.

It is a disturbing tale of what Collins calls a kind of environmental “bait and switch” (of which he provides even more detail in an earlier report), but after a year of documenting the mis- and malfeasance of the nuclear industry and its supposed regulators, it is, to us here, anyway, not a surprising one.

To the atom-enamored, it is as if facts have a half-life all their own. The pattern of swearing that an event is no big deal, only to come back with revision after revision, each admitting a little bit more in a seemingly never-ending regression to what might approximately describe a terrible reality. It would be reminiscent of the “mom’s on the roof” joke if anyone actually believed that nuclear operators and their chummy government minders ever intended to eventually relay the truth.

Fukushima’s latest surprise

Indeed, that unsettling pattern is again visible in the latest news from Japan. This week saw revelations that radiation inside Fukushima Daiichi’s reactor 2 containment vessel clocked in at levels seriously higher than previously thought, while water levels are seriously lower.

An endoscopic camera, thermometer, water gauge and dosimeter were inserted into the number 2 reactor containment, and it documented radiation levels of up to 70 sieverts per hour, which is not only seven times the previous highest measurement, but 10 times higher than what is called a fatal dose (7 Sv/hr would kill a human in minutes).

The water level inside the containment vessel, estimated to be at 10 meters when the Japanese government declared a “cold shutdown” in December, turns out to be no more than 60 centimeters (about two feet).

This is disquieting news for many reasons. First, the high radiation not only makes it impossible for humans to get near the reactor, it makes current robotic technology impractical, as well. The camera, for instance, would only last 14 hours in those conditions. If the molten core is to be removed, a new class of radiation-resistant robots will have to be developed.

The extremely low water levels signal more troubling scenarios. Though some experts believe that the fuel rods have melted down or melted through to such an extent that two feet of water can keep them covered, it likely indicates a breach or breaches of the containment vessel. Plant workers, after all, have been pumping water into the reactor constantly for months now (why no one noticed that they kept having to add water to the system, or why no one cared, is plenty disturbing, as is the question of where all that extra water has gone).

Arnie Gundersen of nuclear engineering consultancy Fairewinds Associates believes that the level of water roughly corresponds with the lower lip of the vessel’s suppression pool–further evidence that reactor 2 suffered a hydrogen explosion, as did two other units at Fukushima. Gundersen also believes that the combination of heat, radioactivity and seawater likely degraded the seals on points where tubes and wires penetrated the structure–so even if there were no additional cracks from an explosion or the earthquake, the system is now almost certainly riddled with holes.

The holes pose a couple of problems, not only does it mean more contaminated water leaking into the environment, it precludes filling the building with water to shield people and equipment from radiation. Combined with the elevated radiation readings, this will most certainly mean a considerably longer and more expensive cleanup.

And reactor 2 was considered the Fukushima unit in the best shape.

(Reactor 2 is also the unit that experienced a rapid rise in temperature and possible re-criticality in early February. TEPCO officials later attributed this finding to a faulty thermometer, but if one were skeptical of that explanation before, the new information about high radiation and low water levels should warrant a re-examination of February’s events.)

What does this all mean? Well, for Japan, it means injecting another $22 billion into Fukushima’s nominal owners, TEPCO–$12 billion just to stay solvent, and $10.2 billion to cover compensation for those injured or displaced by the nuclear crisis. That cash dump comes on top of the $18 billion already coughed up by the Japanese government, and is just a small down payment on what is estimated to be a $137 billion bailout of the power company.

It also means a further erosion of trust in an industry and a government already short on respect.

The same holds true in the US, where poor communication and misinformation left the residents of central Pennsylvania panicked and perturbed some 33 years ago, and the story is duplicated on varying scales almost weekly somewhere near one of America’s 104 aging and increasingly accident-prone nuclear reactors.

And, increasingly, residents and the state and local governments that represent them are saying “enough.” Whether it is the citizens and state officials from California’s Simi Valley demanding the real cleanup of a 53-year-old meltdown, or the people and legislature of Vermont facing off with the federal government on who has ultimate authority to assure that the next nuclear accident doesn’t happen in their backyard, Americans are looking at their future in the context of nuclear’s troubled past.

One year after Fukushima, 33 years after Three Mile Island, and 53 years after the Sodium Reactor Experiment, isn’t it time the US federal government did so, too?

Union of Concerned Scientists Report: Nuclear “Near Misses” Symptom of Failing Regulatory Regime

8:59 am in Uncategorized by Gregg Levine

(image: UCS report on The NRC and Nuclear Plant Safety in 2011, detail)

In its second annual report on the safety of nuclear power facilities (PDF) in the United States, the Union of Concerned Scientists have documented 15 troubling lapses–what they call “near misses”–at 13 of the nation’s atomic plants. The study details specific problems that still want for repairs, but much more disturbing, it also outlines systemic flaws in America’s nuclear regulation and oversight regime.

The problems range from aging and improperly maintained safety systems to unforgivably long delays in the implementation of Nuclear Regulatory Commission rules on fire suppression and seismic security:

We found that the NRC is allowing 47 reactors to operate despite known violations of fire-protection regulations dating back to 1980. The NRC is also allowing 27 reactors to operate even though their safety systems are not designed to protect them from earthquake-related hazards identified in 1996. Eight reactors suffer from both afflictions. The NRC established safety regulations to protect Americans from the inherent hazards of nuclear power plants. However, it is simply not fulfilling its mandate when it allows numerous plant owners to violate safety regulations for long periods of time.

The report also notes instances where nuclear workers were needlessly exposed to unsafe levels of radiation, and plants where failure to follow basic protocols had rendered backup systems functionally useless.

But perhaps most alarming (if not actually surprising) were the UCS findings on how the NRC handled Component Design Bases Inspections, or CDBIs:

Inspectors are supposed to use CDBIs to determine whether owners are operating and maintaining their reactors within specifications approved during design and licensing. Some of the problems concerned containment vent valves, battery power sources, and emergency diesel generators—components that affected the severity of the disaster at the Fukushima Dai-Ichi nuclear plant in Japan.

While it was good that the NRC identified these problems, each CDBI audits only a very small sample of possible trouble spots. For example, the CDBI at the Harris nuclear plant in North Carolina examined just 31 safety-related items among literally thousands of candidates. That audit found 10 problems. Beyond ensuring that the plant’s owner corrected those 10 problems, the NRC should have insisted that it identify and correct inadequacies in the plant’s testing and inspection regimes that allowed these problems to exist undetected in the first place. The true value of the CDBIs stems from the weaknesses they reveal in the owners’ testing and inspection regimes. But that value is realized only when the NRC forces owners to remedy those weaknesses.

In other words, it’s nice that you made the good folks at Harris fix those problems, but when a preliminary audit reveals a one-third failure rate, perhaps that plant has earned itself a full top-to-bottom inspection. Read the rest of this entry →